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THEORY OF A GYROVERTICAL CCMEISS

A. Yu. Ishlinskiy (Kiev)

1. Below we Will give a strict account of the theory of a

gyrovartical compass wtcse senscr is a device similar to the

so-called gyrospherq of tte "ne Anschuetz" gyrcscopic compasses

1,g 2.

This sensor can be considered to be a set of two gyroscopes. The

axes of the housings of taese gyroscopes are parallel to each other,

while their journal bearings aze rigidly fastened tc the same

framework, which will lteccetcrtb al~so be called the gyroscopic frame

or simply the gyroframe 1Fige 1). In a two-gyroscope compass, this

frame is surrounded by a spnerical shell and is submerged in a

liqui.1, which provides extrfine1lj perfect suspension of the framework
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with almost no f rictior (Figj. z) .

Fig. 1. Fig. 2.

-4p will assume that tue centez of suspension of the framework

moves over a certain sphere S with radius R which surrounds the

Earth, while the force cr gravity cf the framework to the Earth is

reduced to the single fcrce F ajli3ed to the center of gravity of the

framework (together with the giroscopes) and dirscted toward the

center of the sphere.

aJe will consider tkat the sphere S does not participate in the

Earth's rotation and its orientaticn relative to stationary stars

does not change. In the future, the translaticnal motion of the

sphere is insignificant, since it takes place with vanishingly small

acceleration. Tharefore, we can consider the center of the sphere S
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to be fixed.

As we will show later, it is very easy tc investigate the

movement of the sensor relative to fixed sphere S ( 3].

Jo will disregarl tha forces of friction in the suspension of

the frame itself and in tne teazings of the axes of the gyroscope

housings, as well as unavoidanle assembly defects, e.g., the presence

of axial and radial gaps in tna harings and residual inaquilibrium

cf the gyroscopes arcund the axes cf their hcrsings.

We will assume that liie tc the sensor cf a two-gyroscope

compass, a special gear drive (cr iour-ccmponent mechanism) turns the

gyroscope housings relative to the framework to different sides at

angles which can be considered tc be equal (Pig. 1 and 2).

2. According to the pz.cession (so-called elementary) theory of

gyroscopic phenomena, we will ccnsider the total kinetic moment H of

the entire gyroscopic frameworx to be equal tc the geometric sum of

the intrinsic kinetic ucuents of tee gyroscopes B' and 8,,, which have

the same values. We will use 2c tc designate the angle between the

axes of natural rotaticn of the gyroscopes (Eig. 1). Then

H=2Bcosg (a- B'=B) (B )
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ThA total kinetic icaint A is directed along the oissectrix of

angle 29. Bfcausa of the presince of the aforementioned gear drive,

the vector H does not ctanue 1csltion relative to the framecrk.

4e will bind coordinate system xyz with its origin in the center

cf suspension to the frazwwozx, with the y-axis directad parallel to

the victor H, and the z-axis parailel to the axes of the gyrcscope

housings. The position cf the x-axis is therety uniquely defined

(Fig. 3).

Fig. 3.

we will use w. w,, wx tc designate the projections of the

angular velocity of the framewozk relative to sphere S (or.

squivalantly, relative tc d ccucting system hcund to stationary

k~-r
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stars) onto the axes of this coczdinate system. The expressions

d z  dH dH-+ ",- 1 Hv, -aT+ ,z, -(aHz,, ~+i zH, -- H (2)

are the projections of the velocity of the end of the v9ctor of the

kin.atic moment of the g~zosccpic zzame 8 ontc the x-, y- and z-axes,

with tha assumption that the origin of the vector is fixed. According

to tha known theiorem of macdanics, these projections are equal to the

sums of the moments of the forces acting on the framework around the

same axas, r.spectively. ie will designate these sums as M., MIt and

MV1.

The kinetic moment ct the zramework is directed along the

y-axis. Therefore,

H/=O, H = H=2B cos e, H, - 0.

As a result, we will uave tae three equations:

ds

In the case in question, the gyroscopic framework is a

mechanical system with fcur degrees of freedom. Therefore, in order

to completely describe the laws cr its mcvement, we should add

ancther equation contaiming the Frojecticn of the angular velocity

to equations (3). For this purpcse, we will pcint out that the

projections of the velccities cr the ends of the intrinsic kinetic

"mew
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moments of the gyroscopes onto :a z-axis are expressed by the

formulaq

B - . = Ms', w.~B" - ,,B." = Ms (4)

Here 41 and M" are the sums of the moments of the forces acting

cn tha housings of each cf ;be gyroscopes around the axes of these

housings, and the values d, B E1, B" are the projections Cf the

intrinsic kinetic momerts of tce 91roscopes of the frame B' and B"

cnto the x- and y-axes, respectiv~ly. Obviously (Fig. 3)

B.' = -B." = B sin , B,' = B," = B cosa (5)

According to the Frecwssion (elementary) theory of gyroscopes,

only the intrinsic kinetic acments of the gyrosccpe rotors are

considered in the equaticas cf sovement of the mechanical system. The

remaining kinetic moments and tne changes corresponding to them are

not considered. Thus, te should ccnsider the forces directly applied

to th4 framework to be talanced ralative to each other. In

particular, we will have

M. - M, - M, = 0 (6)

Here the moments -9t4 and are the ccucteraction of the

gyroscope housings, to the axes cf which moments Mfland M are

aoplied by the framework. Substituting the expressions for moments M'1 _

and M'" in relationship (t) according to formulae (4) and considering
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equations (1) and (5), we will again obtain the third equaticn in

(3).

3wO we will formulate the difterence of moments M!I and M and

designate it as N. Acccrding to formulae (4) and (5), we will have

N = Mz'- M.' - - (% 2B sin6 (7)

.oment N can be created ay a special spring device (Fig. 2). In

this case, it is a function or angle £.

Thus, the movement ot rta yrcscopic frame is determined

according to relationships (3), (7), and formula (1) by the fcllowing

four equations

-,2Bcose = M, w. 2B cos a- M,

d 2B cos. = Mh. -&%,2B sina = N (8)

3. It turns out t.at the parameters characterizing the

gyroscopic framework and, in particular, the form of the dependence

cf moment N on angle C, can te a-iected so that when the specified

initial conditions are satisfied, the z-axis bill always be normal to

sphere S, as if the suspensicn icint of the framework did not move

cver it.

In order to provA this inzaresting thecrem of theoretical
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mechanics, we should use equaticns (8) and explain the circumstances

under which they can be satiszled identically.

Ae will introduce a caztain moving coordinate system ,

whose origin is located at the susiension pcint of tha gyrosccpe,

while the t*-, ?*- and *-axes aze oriented tcward stationary stars.

Equations (8) are preciseiy tna equations of mov emnt of the

gyroscopic framework relative tc tnis cccrdinate system. Along with

the force cf gravity tc tne Earth's center and the reaction cf the

suspension, the forces acting un tne framework should include the

forces of inertia of its translaticnal mcvemert, together with the

prcgrassively moving cccrd;nata system . The latter are reduced

to ta single force Q apiliad tr tae center of gravity of the

framework. The projecticns of tais force onto the axes of coordinates

x, y ind z are:

.= - rw, - mwy, QZ = - mwt (9)

:ere m is the mass cf the iramework together with the housings

and rotors of its gyrosccpes, w,, wT and w._ are the projecticns of

the acceleration of the suspensicn point of the framework as it moves

over sphere S onto the axes o tha coordinate system.

According to the known kinematic formulae (4]

-. . - 4
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WX = Li +  WYVZ -- 'VV

~~~~~W1, = -F+ ,,=-- v 0
dv,-j + c(lXVz (AhzV1,

• w,10 d + "'=xVy - =

where v,, vI, v. are t1e projections of the velocity of the

suspension point, and w., ', W are the projections of the angular

velocity of the framewcrk itselz and, consequently, also coordinate

system x, y, z relative to spoare S. Since, by assumption, the

suspension point moves cver spnare S and tha z-axis must be normal to

this sphere, (31

v= WR, vW = -- 1 R, v, = 0 (11)

Using formulae (9), (10) and (11), the projecticns of force Q

cnto the axis of coordinate system xyz can now be represented as

) ( '
Q , -m R (1- - ' t2 )

Let the center of gravity cz the framework be located on the

negative part of the z-axis at a distance 2 from the suspension

point. In this case, the force of gravity is directed along the

z-axis and, therefore, its acment relative to the suspension point is

equal to zero. The samf is true of the component of the force of

in-rtia of translationai motion aad the force cf the coupling
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reaction. Therefore, it suzficas to find the moments of forces Qh and

QI relative to thc x-, y- and z-axas in crder to determine moments

Mr, M, and M,. As a rasult, wa ottain the expressions

MX = IQ,, My - IQ, M- = 0 (13)

Substituting these expressicns in equaticns (8) and considering

Iormula (11), we obtain tae fcllrwing equaticrs:

-- .2Bco mab wF- ) .2B cos z = 0
- ,2B cos e=mIR (- c)~B )O 0
d-(2 cos B) = mlR ['-" + '.W.) tov 2B sine = N

which must be satisfied ideatica.lj.

According to the third exprassion (if we do not considar the

exceptional case when t = 1/2), we will have

= 0 (15)

Now it is not hard to sra tbat the first two aquations cf (14)

3re satisfied if the ccndition

2B cos, a H = mIaR v (16)

Is observed.

Using this conditicn to aiiuinate the value w from the fourth

equation of (14), wo arriva at tae relationship

N= 4- cosa sing (17).
MIR
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which dqterminqs the unknown -or of the dependence cf moment N on

angle £.

Relationships (11), (15), (1o) and (17) make it possible to

explain what the initial condizicas of the movement of the gyroscopic

frame must be in crder icr the uescribed movement to be possible.

According to rslationshii (15) and the second formula in (11), we

will have

Vi = 0 (18)

Therefore, at the izitiai icint in time, the x-axis, which is

bound to the gyroscopic ±zame, must be directed along the tangent to

the trajectory of the suspensicz pcint during its movement over

spheri S (Fig. 4). The x-axis will only be tangent to the above

traj4ctory at all times wnen the ramaining initial conditions, which

will be explained below, are alsc satisfied.

At
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Fig. 4.

According to the first fozaula in (11) and relationships (15)

and (16), we obtain the reuatic

2B cos e = mv (19)

whsre v is ths velocity c¢ tha tramovork's suspension point relative

to sphere S. Therefore, at the suspension pcint was vo at the initial

Foint in time, the initial value or angle 9o shoull be determined by

the formula
ml.',

2B, (20)

In the future, based on tne sacond equation of (14) and

relationship (15), formula 119) remains valid throughout the time of

novem-3nt during random mcvament cr the suspensicn point. Finally, at

the initial point in time tae z-axis, which is parallel to the axes

~J
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of the gyroscope housirgs, sncula oe normal to sphere S. When these

conditions are satisfied, accordinj to relaticnship (17), moment N

will be such that on the oasis cz the fourth equation in (14), the

angular velocity component or thne ramework w determined by it

satisfias the first equation in 411).

At the initial point in tize, if conditicns (18) and (20) are

satisfied with a small exror and tne z-axis is deflected from the

normal to thr surface ct S Dy a small angle, the movement cf the

framework can be examinea al stuaying small oscillations around

movPm3nt d(uring which the inixi.al conditions are satisfied precisely.

'e will return to this pzoDlew in 36.

4. Now we will tuzr our attention tc studying the movement of

the gyroframe relative tc zae Earth, considering it to be a sphere

with radius R and considerIng that all of the conditions in §3 are

satisfied precisely.

We will introduce the mcving coordinate system yC , the e-axis

of which is directed alcng the tangent to the parallel to the east,

the I-axis - along the tangint tc the meridiar to the north, and the

C-axis along the Earth's radius upward. Ve will place the origin of

coordinates at the frameworx suspension point.

N% ,.

W..A; .. M.N* A



DOC 0926 EAGE 14

We will us3 U to ddsignart zna Earth's angular velocity, * - the

latitude of the locaticn (strictly speaking, geocentric), and VA and

V# - the eastern and ncrtnazn cczpcnents of the velccity of the

origin of systam ej relative tc the Earth. The projections of the

velocity of this point relative tc sphere S onto the e- and ,7-axes

ars rapresented as fcllcbS-

v = V E + UR cos?, v, = VN (21)

Now, using formula (11), after first replacing the letters x and

y in them by e and 7, respectivily, we ottain the known formulae

-- U + UC (22)

for the projections of the angular velocity of the triangle e

relative to coordinate system 4*1*, which is oriented according to

stationary stars. As we know, the projection cf the above angular

velocity onto the C-axis is exiressed by the fcrmula [1]
vs

uZ . tg T + U sin 4 (23)

We will use 8 to designata the angle between the y- and I-axes,

counting the positive diracticn cf this angle as is shown in Fig. 5.

It is not hard to see tkat here tee projecticns of the angular
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v lccity of coordinats s)stem xyz, which is bound to the gyrcframe,

cnto the x-, y- and z-axEs nas the form:

0:,=auCcos -USsin , ,o =u t sin8+u' Scod, 0,= -- 2 (24)

Czz

Fig. 5.

According to the laws cf movement of the gyroframe given in §3,

we must plug w. = 0 into tha rist of these fcrsulae. Furthermore, if

we replace the values up and y. in them by their representation

according to formulae (il), we will have

VN
(25)

Thus, the y-axis, which is bound to thR gyroframe, is deflected

from the direction to the north ty angla 8, which is determined by

formula (25). This agrees with tne known formula for the so-called

* velocity deviation of a yyroscojic compass.
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Now we will direct oux atzletion to the relationship (19)

between the kinetic moment of the gyroframe and the rate of movement

of its suspension point cver spnir S. Ccnsidering formulae (21) and

(1) , this r-lationship can ne represented' as follows:

H=2Bcosa=mIjV(RUcos(F+VE)'+V I- (26)

Footnote: 'This very relaticnsaiF was obtained earlier by V. G.

Zhelaznov when refining tue known Schuler ccndition H = mIRU cos* in

the approximate theory cf qyrosccpic compasses. When the Schuler

condition is satisfied vita a cerzain degree of approximation, the

deviation of the gyrcscoFic ccmjass does not depend on the fcrmer

values of the velocity cf tne snip and its acceleration, but is

mainly determined by fcaula (45). Other researchers (E. I. Sliv, Ya.

X. Roytenberg) refined tte Schuier condition (fcr the case of high

latitudes) by considerirg only cne eastern component of the velocity

of "13 ship Vg, and it was reiresented in the fcrm

H = ml(Rt coso - V&). End fcctncte

Thq above information shows tuat relationship (26) acutally

proviles precise adherenca ot tae aeviation of the gyroscopic compass
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to law (25), as long as the depenaence of the mcment N on the angle L

in formula (17) is satis±iad aud, zurthermore, the in.itial conditicns

in §3 are observed. We wi.U. pcint cut that in this case, ths z-axis,

which bound to the gyrcscopic fraaevork, is directed towards the

center of the Earth. Ttezerora, a forms a certain small angle with

the vertical which depends cn the latitude cf the location.

5. We will construct tte oarocux triangle xOyOzO with the apex

at tha suspension point ci the gyrcframe. we will direct its xO-axis

along the velocity vectcz ot zne suspension pcint of the framework

re.lative to sphere S ana taa zO-axis normal tc the sphere. Here the

direction of the yO-aiis is completely defined. If the initial

conditions of the movement of the gyroframe given in §3 are observed,

the x-, y- and z-axes, whica are bound tc the gyroframe, will always

coincide with the xo-, 10- and z0-axes during random movement of the

triaagle over surface S.

We will consider the general case of the initial conditions of

the gyroframe, and we will ccnstruct the equations of its movement

relativa to triangle xr y 0zo.

We will define the Eositich or coordinate system xyz relative to

triangle xOyOzO as shobn an Pi. 6 and 7 by the three angles at and

. . .6 : : ' . : mm,. ". . . .. pi4 mm " "
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y. Angle a da.tprmines tne rotaticn around the z-axis, which ccincides

with thq zO-axis of auxiliazy coorainate system x'y'z' relative to

system xOyOzO. In turn, angle 0 is the angle cf rotation around the

x"-axis (or, analogously, tne x'-axis) of the other auxiliary

coordinate system x"y"2" relative to the first, i.e., the system

x'yz*. Finally, angle y is tha dngle of rotaticn arcund the y-axis

(it is also the y"-axis) Oi coordinate system xyz relative tc system

x"y"z". The table of ccsinas Gr rba angles between coordinate systems

xyz and xOyOzO is:

COS iyAT- aA Gn ifi lay l 6 C404 Y + COG Wi 0 l610 Y - CO 0 BID Y

- IG Co s COG a Go&a a a1I (27)
z CoSaaL£DY+6il a nio odY Mls aI DT-- COS a sin 0 0 Y a 0 ecI

-. . ".

C)Y 
dr

Fig. 6. Fig. 7.

In order to obtain tne pro3ection of the angular velocity of

cocrdinatt, systim xyz cnto its saai axes, we shculd take the sum of
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the projections of the angular velocity of triangle xOyOzO onto these

axes, as wall as the relative angular velocities: da/dt of ccordinate

systaem x'y'z' rqlative tc xOyxoz, ap/dt - of system x"y"z" relative

to x'y'z' and, finally a?/dt ci coordinate system xyz relative to

systam x"y"z".

The angular velocity vectoz da/dt is directed along the zO-axis,

and the angular velocity vector a/dt - along the y"-axis. In turn,

the aagular velocity vector dp/a% is in the same direction as the

x'-axis. The x'-axis, which ccincides with the x"-axis, is the

intersection of the cocrdinate klanes xOyO and zi. It forms angles y,

'/,, and 1/zw - y, respectively, with the axes cf the coordinate

system.

Considering these circumszances and the cosine table (27), we

arrive at the following expressicns for the unknown projections:

ca. = o (cos a cos y - sin a sin P sin 1) + ho (sin a coas + COS a sin p sin 7) +

+ C,-0+ (CO iU7 L O (28)

w=, so(-Sin a coa)+ a,.* cosacos p + (W10 + L sinp+±

W ..o (COS sin + sinSin P cos ) + fobo (Sin a Sin I cobsin OcBs) +
; + .aeo+ d--e)COB j COS T+ !L0 sin

Here ca,. co and w,.* designace the projections of the angular

velocity of triangle x0y0 z cnutc its intrinsic axis. According to

9J
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formula (11) we will hava

(ybs. V ,, . (29)

where *.;0 and v,.O are the projecticns of the velccity of the apex of

trianil- xOyozO onto its xO- ana yO-ax-as. Hcwever,

vale - 0 (30)

sinca the velocity of tne ape ct the triangle, by assumption, is

directed along the xO-axis. Ccnsidiring forsula (29) and equation

(30), according to express.Lons (4d) we obtain the following formulae

for the projections of %hd angular velocity of the gyroframe to th.

axes bound to it:

w mj-(sinacosT +cosasin sinT) + ( ) coSP sin T)+jCOs T

,=.-.cosLcosp + W + L")sinP + ()

=--(sin sinT-cosasin Pcous7)+ (w+ d- coscosT-+L sin Tds di

In these formulae
V W .0. (32)

!i

are the velocity of the apex ct tae triangle relative to sphere S and

its angular velocity ccajonent alcng thq normal to this sphere,

respectively. Formulae (31) snould be plugged into the left sides of

equations (18) of the ecvaaent cl the gyroscopic framework.
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Now we will calculate zhe rignt sides of these same equations.

According to the assumrtion 3ade in §3, the fcrce of gravity F of the

gyroscopic framework tc tne Earth is directed to the center of sphere

S and applied to the cenver ci gravity of the framework. With a high

degre3 of precision we can ccasider it tc be parallel to the zO-axis.

Then, according to the ccsiae tanld (27), its projactions onto the

x-, y- and z-axes, which are bound to the gyrcframe, are represented

ty tha ax~ressions

F. - Fcos P sin , Fu=--FsinP. F, =-F cosPcoo (33)

In order to calculate similar projecticns cf the force of

inertia Q of the translational movement (see §3), we should first use

formulae (12), representing tma, with consideration of equations

(29), (30) and (32), as
= da'

d. Q. = -mv, - m- (34)

ie will point out that formulae (34) can also be obtained

indir3ctly, if we consider that the expressions

Wt dv V1 9wP (35)

.pa
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are projections of the acceleratzcn of a point moving over a sphere

cn tha axis of the Dartcux traaagla bound to the trajectory Cf this

point. Here we must consider that the radius cf geophysical curvature

cf the trajectory P t, the angular Lotation rate w of the Darboux

triangla around the normai tc the sphere (arcund the zO-axis), and

the valocity of its apex v are ccnnected by the relationship

v =0 pg (36)

Using formulae (34) and the ccsine table (27), we obtain the

following expressions fcz the picjections of the force of inertia Q

onto the x-, y- and z-axes, which are bound tc the gyroframe:

dvQ,= - m --(cos os- -sin =sin siny) -

-maw (sin cos + cos 4 sin sinT) + m- (cos P sin.f) (37)
dv

QY rff i-m-p (- sin a Cos )--mtav cos a cos + m -t- sin

Q -- m±0 (cos a sin T + sin a sin P cosT) -

mcv (sin a sin T- cos 0 sin 0 cos T) + m-t cosPcosT

In coordinate system xyz, tha center of gravity of the

gyroscopic framework has the following ccordirates: xc-ye=O, z=-l.

Therefore, the un)ccwn moments M, M,, Ms of the forces

acting on tho gyroscopic iramircx can be represented by the formulae
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(38)

M= I(Fv + Q,) + i, Mv= -(F + Q,)+M,, M. -M;

where m., M,, m' are the moments of any cther forces (besides the

forces of gravity and inertia) which ari also applied to the

gyroscopic framework relative tc tae x-, y- and z-axes.

As for the reacticn forces ci the suspension point of the

framework or the forces ct the jassure cf the fluid on the

gyrosphare (for a "Kurs" type yroscopic compass) , their moments

relative to the x-, y- ara z-axes dre all equal to zero. Replacing

the vilues F., YQ ana C1 in rormulae (38) by the expressions

accorling to equations 133) and (47), we will have

V
,Il = - (- sin a, Cos nI Cos , t CosP+ --F sn0]+M

didv

-- m jj(Cos aCosT-sin a sinlP sinl (39)

-,nwv (sina cosT cos ,sin - sin-,) + (m- A- )(-- cos P sin 1 )] +

Like (31), these exf~rssicns should be plugged into equations

(14). As a result, w; cttain the fcllowing qquaticns of the zovement

of thi gyroscopic framewcrx relative to the Darboux triangle:

; " ., ,*.
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-d ]d(Sin£sin - cOsLSia .COSj)+ W+ )

+ 0 sinrl 2B cos s = ml - c sn Cos p - mIQV Cos = Cos

+ (mI---I F)sin + M;

d 2Bcos = ml -- (coszcos - sin xsin Psin ,) + mhnw (sin acos' +
dt

+ Cos at in P sin7) + (MI F) Cos Psin 7+ M +
(sin- cos T+sasin 0 sin y)W  +F cos C sinT I +

+L cos T 2B cos = M' (40)

CosaCos ( + .sinP + j]2Bsint = N(a)

Equations (40) ars valid for any gyroscopic framework.

Furthermore, if we set

M: = M* == M" 0 (41)

in them, and if we use tcrmula (17) for moment N(&), they will be

relatad to th. mcvement cf our sjecial gyroframe, the properties of

which are given in §3. In this case, as cne wculd sxpect, equations

(45) are satisfied precisely, if we set

m- -- 0 (42)

in them and if we find angle t txcm relationship (19).

- "I
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In this case, functions v = v(t) and w = w(t), which give the

movement of the suspensicn pcint or the gyroframe over surface S, can

be completely arbitrary. dhen relationships (42) and (19) are

satisfied, the gyroscoric frameborA moves as was described in §§3 and

4. That is to say, the kinetic Icuent of the framework, which is in

the ,liiaction of thq y-axis, reaaLns perpendicular to the velocity

vactor of the suspensicn poLnt relative to sphera S during any

movement of this point. The z-axis, which is Farallel to the axes of

the housings of the gyroscope traieworks, continuously passes through

the canter of the sphere.

6. Equation (40) of the movement of the gyroscopic framework

arouni the axes xOyOzO ct the oarrcux triangle, which is bound to the

trajectory of movement ct the suspension point, is too complex for

studying the movement cf tne traaawork in the most general case.

Therefore, we will limit ourselves to studying small movements of the

framework relative tc this triangle. On the basis of this, we will

retain only the first-crdez terms relative to angles a, f and 7 and

their time derivatives in equaticna (40).

Keeping equations (41) and formula (17) in mind, we will have

MEN.
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P+-, )2Beose=[m' d -(F-M-
d-(2B-c- s e) o=I Vd -P- in

I,, R, ) I,+M L(do

-- L " +- + Wp 2B sin, a- -wos asina

These equations shculd be considerad tc he the equations of the

disturbed movement of the gyroscope framework relative to the initial

,ovemant, during which ta dngjles , a , y and e are determined by

relationships (42) and (19). sunosequently designating angle f of the

undisturbed movqment as E0, in equations (43) we will have

+(4)

where 6 is a small value ot the same order of magnitude as angles a,

and 7. Preserving the fizst-crear terms already related to all four

angles x, f, 7 and -r in e, uations (43), and ccnsidering that

according to condition (19), we saculd set

2B cos e0 am mlv (45)

we arrive at the system ct equaticns of the disturbed movement of the

gyroscope framework

I.'..
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--ml-' -ml.- a+ IFP --2Bsiu 0& (46)

d , dy 2 B sin 0

+i m& 67

- d (2Bsin 08) + F- --- '. =mdvI

If the velocity of tae susFension pcint cf the gyroscope

framework v and angular vaLocaty w of the Darboux triangla arcund the

normal to spherq S are ccnstant, slstem (46) will become a

homogeneous system of linaar oi.terential aquations with constant

coefficients. Approximately assus.ng that

F - F = mg (47)

where g is the acceleration ot zth force of gravity, we arrive at the

characteristic equation cf system (46), the rcots of which are

_ i( + ),±i(- )(48)

tIere ;V is the irequency corresponding to the Schuler

periol

T = 2vVRI/g (49)

According to the approximate theory of a three-dimensional

gyrocompass proposed by Gakkeler L2], in this case two

noninterrelated oscillations, eaca of which has a Schuler period,

.,-~~~ I . -
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should take place: the i.zst is rdiated to variablas a and , and the

se cond - to variabls 7 and 6. Ibe above information shows that the

Gekkeler theory contairs significant inaccuracies, although it

generally leads to correct relaticnships of type (17) and (19) for

s~lectiag the characteristic parameters of the gyrocompass sensor,

whcse plane xy remains hcrizcntal (according to Gekkeler - almost

horizontal) during any ,anauvers cf thq ship.

If approximat3 fcrauia (47) remains valid, system of aquations

(46) can also be integrated wita variable values of v and w, i.e.,

during arbitrary movement of the suspension pcint over spherl S.

Actually, using equations 147) and (48), equations (46) can be

represented as

d v 2B sin 08b dp

, 2- 0= - , +V (50)
-Z INM1LV gR ' di

dyV 2Bsinz0  d ( 2B Pinc 7 . _ -
-1 Vj-- di M I V-A / - -R

Now we will introduca two new complex-valued functions of the

real argument t according to the formulae

+ 2B sin 
58

Then, as it is eas) to see, system of equations (50) can be
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replaced by the system ¢f two equations

d' + iV - itap, +iV' iV (52)

7T ds

This system, in tcrn, is orcken down into two independent

equations
-L(- + P) + i (V -- W) (" + IL) W--" o

d P _ ) + i (V + c)0(3__ (53)

which are immediately integrated. oe will have

t

wh.rp. j, and po are the initial values of functions J%(t) and )A(t) at

point in time t = 0.

Using formulae (54) and (51), it is already easy to also

represent the unknown vaziles a, t, 7 and 6 in explicit form as

functions of their initial values o, 08. ?a. 6 and time t.

With respect to variables , , : and 2B sin ,=m ., where,

according to relationshij (45), SP is determined by the formula

sin ""* MI " (55)i ,'-a,

"A e, "
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system of equations (50) is reduced to a system of linear

differential equations bith constant coefficients, as long as the

angular velocity w is cczstant. Ine latter is expressed by the

formula

V d 4
= U sin T + jLg (-p (56)

where T is the true course of the ship, i.e, the angle between its

v-iocity vactor (to be acre Fecisu, th% velccity of the suspension

point of the framework) and the meridian of the location counted

clockwise from the direction to tne north.

7. The above theory of small movements of the gyroscope

framework around the mcnzle axes of the Darboux triangle related to

the trajectory of the suspensicz pcint leads to nonattenuating

oscillations. The probles of the strict substantiation of the

stability of undisturbed movement aefined by nonlinear equations (U0)

rsguires additional study, cf course.

Tha introduction cf acteauation similar to that used in ordinary

twc-gyroscope compasses into the mechanical system of the gyroframe

l ads to the manifestatica of naiListic deviations, i.e., additional

deviations of the variables a, p, I and 6 caused by the law of the

change in the acceleraticn of the suspension point during its

fill
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movement over sphere S. The estimation of these deviations also

requires special considerarion. finally, in the future it will be

important to determine tte distcrtions introduced into the movements

cf the gyroscope fraueucrx in iuestion by the difference of the

Earthts shape from a sFhere.
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